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Generalization of a Hardy-Littlewood-Polya Inequality
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This article is concerned with a generalization of the well-known Hardy
Littlewood-Polya (HLP) inequality to higher dimensions n;;o 2. We also show via
construction of a counterexample that for certain exponents and consequently in
some spaces such extension is impossible. © 1991 Academic Press, Inc.

1. INTRODUCTION

In this paper, we generalize the well-known Hardy-Littlewood-Polya
(HLP) inequality (1.1)-(1.3) to higher dimensions. This inequality has
applications in many areas of mathematics including approximation of
functions; see Theorem 3.4.6 in [1]. Let us recall the classical HLP
inequality:

THEOREM (G. H. Hardy, J. E. Littlewood, and G. Polya [2, Theorem
330J). Let 1 < P < 00, e oF p -1. Further, let f be a function defined on
(0, (0) and such that

LXl

If(tW te dt < 00.

Then the following inequality holds:

foo W(tW t8- p dt ~ ( 1 )P fCC If(tW to dt (1.1)
o !8-p+ll 0

where

F(t) = {S~ If(s)1 ds
S;'" If(s)1 ds

115

for 8< p-l

for 8> p-1.

(1.2)

(1.3 )
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Our generalization of (1.1 )-( 1.3) to a higher dimension, n >2, is

(1.4 )

where p is a real number >2, x E 9\n, V = grad, Ixl = Euclidean norm of x
in 9\n, and u lies in a proper function space. To show that (1.4) in fact
generalizes (1.1 )-( 1.3) to a higher dimension, choose as u a radial function
(i.e., a function of Ixl), e- p=n-k-3, and let r= lxi, W n = surface area
of unit sphere in 9\n. Then we have

f
lu(xWd=f lu(xW d=foof lu(rW rn-1dwdr
I Ik+2 x I In-e+p-1 x n-e+p-l n

9ln X 9ln X 0 Ixl = 1 r
(1.5)

f lu(xW d foo I ( )IP e-p d-IIk + 2 X=W n U r r r.
9ln X 0

Similarly

f
Ivu(xW dx = foo f Idu(r)/drl rn- 1dw dr

9ln Ixl k - P + 2 0 Ixl=l rn - e -
1

n

foo jdu(r)IP d
=Wn -d- re r.

o r
(1.6)

Substitute (1.5) and (1.6) into (1.4) to see that (1.4) reduces to (1.1). The
generalized HLP inequality (1.4) for p = 2 and k = 0 has been used in
deriving a priori estimates of solutions to some nonlinear partial differen
tial equations (see [4,6]). One application of (1.4) in particular is to
obtain estimates of the solution of semilinear Klein-Gordon equations
in 9\3

where

Du(t, x) + j1u lul P -
1 (t, x) = 0, (1.7)

and

The estimate obtained then is used to prove the existence of solutions to
(1.7). A solution to (1.7) can be expressed in terms of an integral equation
(D'Alembert Formula)

j1 J U lul p
-

1 (r,y)
u(t, x) = uo(t, x) - ;;;= I I dy, (1.8)

4 y 2n Iy-xl~t-T y-x
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where the integral is taken over the backward light cone with vertex at
(t, X), and Uo is the solution of 0 uo(t, x) = O. If one uses the change of
variable Y = y - x and dy = j2 dY, the integral in (1.8) becomes

fJ j2 f u IuIP - 1 (t - IYI ) dY (1.9 )4j2; IYI<;t-T IYI .

One can use an inequality of type (1.4) to estimate (1.9). As an example,
consider p = 5. Then using Holder's inequality, we obtain

I
fJ f u

5
(t - In Y) dY[

4~ IYI <; t - T IYI

fJ [ J1
/
2~ C Ilull co f u6(t -I YI, Y) dY

4 y 7r IYI<;t-T

[f U2(t -I YI, Y) J1 /2
x 2 dY .

IYI <;t-T IYI
(1.10)

The first integral on the right can be approximated via an energy estimate,
while the second one is of type (1.4) for n = 3, p = 2, and k ~ 0, but this can
also be approximated by an energy estimate. For details and further discus
sion of this problem, see [6]. An estimate of the type (1.10) that leads to
existence and uniqueness of the solution to the semilinear Klein-Gordon
equation (1.7) motivates the search for a more general inequality

[1 lu(xW J1IP [J Ivu(xW J1lq--/-dx ~c dx
91n Ixl 91" Ixl S

(1.11)

where p, q, C, S, and 1 are positive real numbers. Theorems 1 and 2 show
that (1.11) holds for p = q ~ 2,

I-s= p,
p

C--
-jn-l!'

and u E C ;;" (9\n \ {O}), the set of all infinitely differentiable functions with
compact support in 9\n \ {O}, n~ 2. For other choices of p, q, I, and C the
question remains open. In Section 3 we verify, by using a counterexample,
that when 1= n, inequality (1.4) does not hold.

2. STATEMENT OF THE RESULT

Let n E Nand k E 9l and assume n - k i= 2; then for all u E C ;;"(91n
\ {O})

f U2(X) d 4 f I V: U 1
2

d
-k+2 x~ 2 --k- x. (21)

9ln jxj (n-k-2) 9ln Ixl .
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For 2~p<00, n-k#2, and for all UEC;,(mn\{O})
following generalization of (2.1):

f lu(x)IP ( p )P f I\lui P
mn Ixl k + 2dx~ In-k-21 mn Ixl k - p + 2dx.

we have the

(2.2)

This inequality will be referred to as a "generalized" Hardy-Littlewood
Polya inequality since it reduces to (1.1) when u is a radial function. This
is obviously a generalization of the HLP inequality only when p ~ 2. We
summarize all these in Theorem 1 and Theorem 2.

THEOREM 1. Let n E N, k E m and n - k # 2. Then for all
UE C;,(mn

\ {O}) and 2 ~ p < 00, the inequality (2.1) holds.

Proof We search for an identity,

(2.3)

where r = Ixl and g, h are two positive functions to be determined later,
along with the constant C. Let

where u=u(x); then

A = h;r) !g'(r) u;+ g(r) \lU1
2

= h;r) {2g'(r)g(r)u(;. \lu)+g'(r?u2 + g2(r) I\lU!2}.

Now consider

f
Adx=f 2g'(r)g(r)U(~'\lU)dX

mn mn h(r) r

f
g'(r? 2 f g2(r) 2

+ mn h(r) u dx +_mn h(r) I\lui dx. (2.4)

The first integral on the right hand side can be simplified. After using
Green's identity we obtain

f 2g'(r) g(r) U(± X;ux;(X)) dx = ±f g'(r) g(r) X; (OU
2
) dx

mn rh(r) ;=1 i~1 mn rh(r) OX;

= - fmn u2(x) div (g'(;h~;;) X) dx. (2.5)
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Use (2.4), (2.5) to expand (2.3) as

f (~__1~)
k C2 k+2 dx

9ln r r
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=-f u2(X)diV(g'(r)g(r)X)dX+! g'(r)2 u2dx
9ln rh(r) 9ln h(r)

+f g2(r)!\7uj 2dx. (2.6)
9ln h(r)

The above identity holds provided

1 g2(r)
rk = h(r)

and

1 =diV(gl(r)g(r)X)_gl(r)2.
C 2rk + 2 rh(r) h(r)

Solving (2.7) for h and then substituting into (2.8) yields

Simplify (2.9) as

or

(2.7)

(2.8 )

(2.9)

This nonlinear a.D.E. in g has a solution of the form g(r) = rS
• Substituting

g(r) = r S in (2.10), we see that s is a solution of the equation

2 1
s -(n-k-2)s+C 2 =0.

The roots are real (which is needed to fulfill (2.5)) provided that

2 4
(n-k-2) - C 2 ;:::0.
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1 (n-k-2f
-&~-_:.......

C2~ 4 or 2 4
C ~ (n-k-2f'

And, for C 2=(4)/(n-k-2), there is a double root as s=(n-k-2)/2.

{

g(r) = r(n - k - 2)/2

h(r)=rn- 2
Thus 4

C
2 = 2'(n-k-2)

(2.11)

This proves that (2.3) is valid when g, h, and C satisfy (2.11). Inequality
(2.1) follows immediately.

THEOREM 2. Let n E N, k E 91 and n - k #- 2. Then for all
UEC~(91n\{o}) and2~p<oo, the inequality (2.2) holds.

Proof For p = 2 the inequality holds because of Theorem 1. Now let
p>2 and e>O for UEC~(91n\{o}), and let v(x)=lu2(x)+el p/4 x(x),
where X(x)=l on the support of u and XEC~(91n\{o}). Thus
VEC~(91n\{o}) so that it satisfies (2.1) and

f V2(X) d 4 f Iv v(xW d
--;:::j:2 x ~ 2 k X

9ln Ixl (n-k-2) 9ln Ixl

as well.
Expanding

Iv v(xW = I~ lu2+ el(p/4)-1 2u( vu) x(x) + lu2+ e1 P/
4 v XI

2

(2.12)

and using the orthogonality of the vectors Vu and V X, V u . V X= 0, we
arrive at

Therefore
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Now let 8 ...... 0,

. f Ivv(xW p2 f lul P
-

2 lvul 2

lIm k dx=- Ik dx,
£~O 9'ln Ixl 4 9'ln IXi

and

. f v
2
(x) f lujP

lIm -lk+2dx= -IIk+2 dx.
£ ~ 0 \ltn Ix \ltn X I

Substituting in (2.12) yields

f lulP 4 (P2)f lul P 21vui 2

~dx~ 2 - k dx.
91 n Ixl (n - k - 2) 4 \lin Ixl

We use Holder's inequality on the right-hand side to show that

f
lulP-2lvul2 (f !Ul q(p-2) )I/q(f Ivul 21 )1/1
':'-:"_-':""k-~ dx~ k dx --k-, dx ,

\ltn Ixj' 9'ln Ixl ,q jRn Ixl 2
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(2.13 )

(2.14 )

(2.15 )

(2.16)

where t = p12, llq + lit = 1, and k l + k 2 = k. Now let k 1 q = k + 2. Then
k l = (k + 2)lq and k 2 = k - (k + 2)/q. Also q(p - 2) = p, since llq = 1- 21p.
Therefore, it is easy to establish that k 2 t = k - p +2. Substitution into
(2.16) gives

which is in turn substituted in (2.15) as

(2.17)

or

But 1 - llq = lit = 21p so that we have

which proves (2.2).
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3. CONSTRUCTION OF A COUNTEREXAMPLE

for x~2.

Here we show that when n = k+ 2, there is a sequence U m E C~(mn\ {O})
such that as m -+ 00,

J
u~(x)
-lk+2dx-+00,

9ln Ix

while

This shows that when n = k +2, an inequality similar to (2.1) does not
exist. We consider um(x) to be a radial function; that is, um(x) = um(r).
Then

J u~(x) d = foo u~(r) d

I I
n X W n r,

9ln X 0 r

where W n = surface area of unit sphere in mn
• Similarly,

The heart of the construction is the fact that the function

1
g(x) = Ii"::"":

ylnx

satisfies

J
oo g(X)2

--dx= +00
2 X

and

(" xg'(X)2dx< 00.

Choose f;;, 0,1 E C~(m), so that f = 0 on ( -00, 1] and

1
f(x)=--
~
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t"J xf'(x? dx < 00.
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as m -> +00.

Also, choose 'PEC;;o(9'l) with supp'P=[-2,2], 'P equal to one on
[ -1, 1], and 0::;;:; 'P::;;:; 1 elsewhere.

Let urn(x) = 'P(x/m)f(x). Then

f
cc u~(x) Jrn f(X)2
--dx?; --dx~ 00

o x 2 X

On the other hand

U:n(x) = ~ 'P' (;)f(X) + 'P (;)f'(X)

lu:n(x)I::;;:;~ ['P'IL'''(~)+ If'(x)[
m

or

C
Iu:n(x)[ ::;;:;-+ 1f'(x)1

m

Using the inequality ab::;;:; ha 2 + b2
) we find that

Then since Urn vanishes for n?; 2m, we have

The construction is complete.

Remark 1. From the construction of identity (2.3) it is clear that

4
C = ------;;:

(n-k-2)2
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is the best possible constant for (2.1) and consequently

is the best for (2.2). Note that this is consistent with the best possible
constant of the Hardy-Littlewood-Polya inequality.

Remark 2. The HLP inequality has an application in weighted Sobolev
spaces. See for example [3, p.28]. The generalized HLP inequality has
applications, as we showed in our introduction, in establishing the
existence of a solution to nonlinear Klein-Gordon equations (see [6J) and
in elliptic equations (see [4, p. 451 J).

Remark 3. The inequality (2.2) holds only when 2~ p < 00. The ques
tion of whether this can be extended to 1< p < 00 is an open question.
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