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This article is concerned with a generalization of the well-known Hardy—
Littlewood-Polya (HLP) inequality to higher dimensions n> 2. We also show via
construction of a counterexample that for certain exponents and consequently in
some spaces such extension is impossible.  © 1991 Academic Press, Inc.

1. INTRODUCTION

In this paper, we generalize the well-known Hardy-Littlewood-Polya
(HLP) inequality (1.1)-(1.3) to higher dimensions. This inequality has
applications in many areas of mathematics including approximation of
functions; see Theorem 3.4.6 in [1]. Let us recail the classical HLP
inequality:

TuroreM (G. H. Hardy, I.E. Littlewood, and G. Polya [2, Theorem

3307). Let 1< p<oo, e# p—1. Further, let  be a function defined on
(0, o0 ) and such that

jw ()P ¢ di < co.
0
Then the following inequality holds:

“ P ye—p ! P P g
L \F(1)|” ¢ dt<<ls_p+1[> fo ()7 £ d (1.1)
where

folfs)ds  for e<p—1 (1.2)
i21f6)ds  for e>p—1. (1.3)
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Our generalization of (1.1)-(1.3) to a higher dimension, n>=2, is

lu(x)|” p P _AVul?
< dx, 1.4
fw G dx n—k—2] fw x| 7+2 X (14)

where p is a real number >2, xe R”, V =grad, |x| = Euclidean norm of x
in R”, and u lies in a proper function space. To show that (1.4) in fact
generalizes (1.1)—(1.3) to a higher dimension, choose as u a radial function
(i.e., a function of |x|), e— p=n—k—3, and let r=|x|, w,=surface area
of unit sphere in R”*. Then we have

J‘ |u(x)|pdx_j de:jwjl M_r"“ldwndr
R " 0

o x[KF2 T g x| et e
(1.5)

J L = Jw lu(r)|? v~ 2 dr

o | x[FH? ") .

Similarly
VuI? e ldutryard
J;‘" lxlk—P+2dx_f0 j‘)d:l r'l*&—l ¥ dwn dr
o<} d P

=Wn£) l;'(rr) r* dr. (1.6)

Substitute (1.5) and (1.6) into (1.4) to see that (1.4) reduces to (1.1). The
generalized HLP inequality (1.4) for p=2 and k=0 has been used in
deriving a priori estimates of solutions to some nonlinear partial differen-
tial equations (see [4,6]). One application of (1.4) in particular is to
obtain estimates of the solution of semilinear Klein—-Gordon equations
in R*

Ou(t, x)+ Bu lu|”~* (¢, x) =0, 1.7
where

82 3 62
ngt—z—zgc—? and  xe®R’.

i=1

The estimate obtained then is used to prove the existence of solutions to
(1.7). A solution to (1.7) can be expressed in terms of an integral equation
(D’Alembert Formula)

u(ta X) = uO(ta x) -

B | wld” "(m3) p (1)
|

4 g iy—xi=1~x |y—x]
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where the integral is taken over the backward light cone with vertex at
{z, x), and u, is the solution of Ouy(t, x)=0. If one uses the change of
variable Y=y—x and dy= \/i dY, the integral in (1.8) becomes

ﬁJﬂ- ulul (= 1Y) (19)
4./2x ivi<i~= Y]

One can use an inequality of type (1.4) to estimate (1.9). As an example,
consider p=135. Then using Holder’s inequality, we obtain

B w(i=|¥], ¥) l
————dY
|4 TE'(IYISt—r Y]
4 l: S(t—1Y, Y der/z
<5 J, =Ty
w{t=1¥], ¥) Iﬂ
——dY | . 1.10
XUJYsr—r |Y)? 4 (10

The first integral on the right can be approximated via an energy estimate,
while the second one is of type (1.4) for n=3, p=2, and k =0, but this can
also be approximated by an energy estimate. For details and further discus-
sion of this problem, see [6]. An estimate of the type (1.10) that leads to
existence and uniqueness of the solution to the semilinear Kiein—-Gordon
equation (1.7) motivates the search for a more general inequality

U ’"(x)fpdx]l/psc[f ————Ivu(’f”qu]}/q (1.11)
n x| @ (x|

where p, g, C, s, and [ are positive real numbers. Theorems 1 and 2 show
that (1.11) holds for p=¢>2,

__7
ln—11"

l—s=p,

and we CF(R"\{0}), the set of all infinitely differentiable functions with
compact support in R”\{0}, n>2. For other choices of p, g, /, and C the
question remains open. In Section 3 we verify, by using a counterexample,
that when /= r, inequality (1.4) does not hold.

2. STATEMENT OF THE RESULT

Let ne N and ke R and assume n—k #2; then for all ue CJ(R"\{0})

j w3 (x) 4 j‘ [ Vul?
R

s xg(n—'k~2)2 w aF dx. (2.1)
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For 2<p<w, n—k#2, and for all ueCy(R*"\{0}) we have the
following generalization of (2.1):

[u('x)(p D 4 lva’p
Li,, !x,k+2 dxg(ln—k—-Zl) J‘mnlek*p+2dx. (2'2)

This inequality will be referred to as a “generalized” Hardy-Littlewood-
Polya inequality since it reduces to (1.1) when u is a radial function. This
is obviously a generalization of the HLP inequality only when p>2. We
summarize all these in Theorem 1 and Theorem 2.

THEOREM 1. Let ne N, ke R and n—k # 2. Then for all
ue CP(R"\{0}) and 2< p < oo, the inequality (2.1) holds.

Proof. We search for an identity,

N 3 1
Jw( p _Frk+2>dx—j‘mmlv(g(r)u)lzdx, (23)

where = |x| and g, & are two positive functions to be determined later,
along with the constant C. Let

A= |V () w2,

hir)
where u=u(x); then
1 x 2
=— \g'(NuZ v
A h(r)g(r)ur+g(r) u

5 e e u(E a4 g0 20 V).

Now consider

fw/ldx=f g£,—(r~)£(—r—)u(f-Vu)a’x

s h(r) ¥
gy, g3(r)
o dx+jw%—)1w|2dx. (2.4)

The first integral on the right hand side can be simplified. After using
Green’s identity we obtain

= i dwe

. (8'(r)glr)x
- _LR" u?(x) div (W) dx. (2.5)
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Use (24), (2.5) to expand (2.3) as
[Vul> 1 u?
o5 —@) &

- 2 . (g(r)glr)x g(r)?u®
- LRn “ (X) div ( rh(r) > dx + FRn h(r) dx

g(r) )
+fw o | T dx (2.6)

The above identity holds provided

1 g%r)
7 h(r) @7
and
. (8(r)g(r) X> g(r)?
——s = — . 2.8
o=t V( Fh(r) (r) @
Solving (2.7) for 4 and then substituting into (2.8) yields
1 g)x g(r)’
Czrk+2‘dw (rk+1g(r)> i (r) A
Simplify (2.9) as
1 2 ’ 2 . ! 2,12
28 =msg +rigg”—(k+1)rgg —2rg
or
1
r’gg” +(n—k—1)rgg —2r’g* — Eig2=o. (2.10)

This nonlinear O.D.E. in g has a solution of the form g(r) = »°. Substituting
g(r)y=r"in (2.10), we see that s is a solution of the equation

1
s —(n—k—=2)s+

=0

The roots are real (which is needed to fulfill (2.5)) provided that

4
(n—k=2)"~ 550,
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Therefore

(n k—2)? 5 4
< >
c 4 or Oy

And, for C?=(4)/(n—k —2), there is a double root as s = (n—k —2)/2.

g(r) — r(n—k72)/2
h(r)=r""2
a4
T (n—k—2)¥

Thus (2.11)

This proves that (2.3) is valid when g, A, and C satisfy (2.11). Inequality
(2.1) follows immediately.

THEOREM 2. Let ne N, ke R and n—k # 2. Then for all
ue CF(R"\{0}) and 2< p< o, the inequality (2.2) holds.

Proof. For p=2 the inequality holds because of Theorem 1. Now let
p>2 and £>0 for ue C(R"\{0}), and let v(x)=|u?(x)+e|"* x(x),
where y(x)=1 on the support of # and yeC (R"\{0}). Thus
ve CP(R"\{0}) so that it satisfies (2.1) and

j”z(") dx < ——2 f'v”(x)'zdx (2.12)
174 pLiig

o x5 (n—k = 2)° |x|*

as well.
Expanding

2
| Vo(x))?= E [0+ &| PN =1 2u( T u) y(x) + [u? +e|P* Ty

and using the orthogonality of the vectors Vu and Vy, Vu-Vy=0, we
arrive at

2
|V o) =B 10+ 6102 22 | Tl 2 + 2172 T

Therefore
|Vu(x)|2 |/ + |22 u? | Vul? [u? +&] 7 )
dx + —_ |V dx.
Ln PE fw x| X LRH x| IVl
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Now let e =0,
. | Vo(x)|? prr ulP? Vul?
B T A3
31-?})]9; lek dx 4J‘ [xfk dxa {21 :i
and
. ]ulp
gh_r,%j (xlk+2 _Lt" |k+2 (2.14)

Substituting in (2.12) yields

u 4 (2\( e 2 vl
ﬂm,xlkﬂdxs(n_k_z)z(;;)fw PL dx. (2.15)

We use Holder’s inequality on the right-hand side to show that

|ul” 2| Vul® 772 N [Vu Y
JWT“IXSOW |x)ke dx) (Le |x)*! dx) > (2168)

where 1=p/2, 1/g+1/t=1, and k,+k,=k Now let k,gq=k+2. Then

=(k+2)/g and k, =k — (k+2)/q. Also g(p—2)=p, since 1/g=1-2/p.
Therefore, it is easy to establish that k,7=k— p+ 2. Substitution into
(2.16) gives

[ul?~2 | Vul? lu|”? Va [V ul? 2/p
S [ ) ([

which is in turn substituted in (2.15) as

|ul” p’ [u}? “‘1< | Vul? )2/17
LR” lek+2 dx<(n__k__2)z (L{n lx!k+2 dX) J;R" —*‘——‘——ixikjp_,_zdx

or

‘ui” 1-1/q pZ |Vu"’ 2/p
(lexf’”zdx) g(n—k—zfgm.»cv*ﬁ“dx)“

But 1 —1/g=1/t=2/p so that we have

,ulp 2/p p2 |§7qu 2/p
(fww“dx) <(n~k—2)2<fwix!kﬂ””“’x> ’

which proves (2.2).
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3. CONSTRUCTION OF A COUNTEREXAMPLE

Here we show that when n =k + 2, there is a sequence u,, € C7(R"\{0})
such that as m — o,

us(x)
fmn ‘_‘x‘| ) dx — 0,
while
v 2
j l——%)i dx < 0.
- x|

This shows that when n=k+2, an inequality similar to (2.1) does not
exist. We consider u,,(x) to be a radial function; that is, u,,(x)=u,,(r).
Then

J uz—-’"——(xn)dx=w,,fwuf”(r)dr,
bied ‘X‘ [} Y

where w, = surface area of unit sphere in R”. Similarly,

2 €K
J [ Vun()1” vum(i)l dx=wnj ru.,(r)* dr.
a |x|" 0

The heart of the construction is the fact that the function

1
glx)=
In x
satisfies
o 2
j _g_(i)_ dx= +o0
2 X
and

fw xg'(x)* dx < 0.
2

Choose 20, fe CT(R), so that f=0 on (—o0, 1] and
1

Slx)= e

for x=2.
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Then

jwwdx= +00

0 X

ro xf'(x)* dx < 0.

Also, choose Ye CF(R) with supp ¥=[—-2,2], ¥ equal to one on
[—1,1], and 0< ¥ <1 elsewhere.
Let u,,(x) = P(x/m) f(x). Then

o 42 " 2
J y—”’—(—x—)dxzf ﬂx—)-dx—»oo as m— +o0.
0 X 2 X

On the other hand
1 x X
u(x) == " (—) o)+ W(—)f’(x)
m m m
1
|14,,,( )] é% [P'| feogony + 1f ()]
or
C
[ (x)| <—+1/"(x)
m
Using the inequality ab < 1(a®+ b?) we find that
u/ (x)2<D <_1~+f/2)
m X s .

Then since u,, vanishes for n > 2m, we have

2m

j: xul(x)? dx < J

D =
——zxdx+DJ xf'(x)? dx < co.
o m 0

The construction is complete.

Remark 1. From the construction of identity (2.3) it is clear that

4
C=Gik=2p
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is the best possible constant for (2.1) and consequently

(Y
C‘(m-k—m)

is the best for (2.2). Note that this is consistent with the best possible
constant of the Hardy-Littlewood-Polya inequality.

Remark 2. The HLP inequality has an application in weighted Sobolev
spaces. See for example [3, p.28]. The generalized HLP inequality has
applications, as we showed in our introduction, in establishing the
existence of a solution to nonlinear Klein—-Gordon equations (see [6]) and
in elliptic equations (see [4, p. 451]).

Remark 3. The inequality (2.2) holds only when 2 < p < oo. The ques-
tion of whether this can be extended to 1.< p < oo is an open question.
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